The Need For Electromagnetics

So why would an electrical engineer need to know all this theory? There are many reasons why any and all electrical engineers need to understand electromagnetics. Electromagnetics is necessary for achieving electromagnetic compatibility of products, for understanding highspeed digital electronics, RF, and wireless, and for optical computer networking.

Certainly any product has some electromagnetic compatibility (EMC) requirements, whether due to government mandated standards or simply for the product to function properly in the intended environment. In most EMC problems, the product can be categorized as either an aggressor or a victim. When a product is acting as an aggressor, it is either radiating energy or creating stray reactive fields at power levels high enough to interfere with other equipment. When a product is acting as a victim, it is malfunctioning due to interference from other equipment or due to ambient fields in its environment. In EMC, victims are not always blameless. Poor circuit design or layout can create products that are very sensitive to ambient fields and susceptible to picking up noise. In addition to aggressor/victim problems, there are other problems in which noise disrupts proper product operation. A common problem is that of cabling, that is, how to bring signals in and out of a product without also bringing in noise and interference. Cabling problems are especially troublesome to designers of analog instrumentation equipment, where accurately measuring an external signal is the goal of the product.

Moreover, with computers and networking equipment of the 21st century running at such high frequencies, digital designs are now in the RF and microwave portion of the spectrum. It is now crucial for digital designers to understand electromagnetic fields, radiation, and transmission lines. This knowledge is necessary for maintaining signal integrity and for achieving EMC compliance. High-speed digital signals radiate more easily, which can cause interference with nearby equipment. Highspeed signals also more often cause circuits within the same design to interfere with one another (i.e., crosstalk). Circuit traces can no longer be considered as ideal short circuits. Instead, every trace should be considered as a transmission line because reflections on long traces can distort the digital waveforms. The Internet and the never-ending quest for higher bandwidth are pushing the speed of digital designs higher and higher. Web commerce and applications such as streaming audio and video will continue to increase consumer demand for higher bandwidth. Likewise, data traffic and audio and video conferencing will do the same for businesses. As we enter the realm of higher frequencies, digital designs are no longer a matter of just ones and zeros.

Understanding electromagnetics is vitally important for RF (radio frequency) design, where the approximations of electrical circuit theory start to break down. Traditional viewpoints of electronics (electrons flowing in circuits like water in a pipe) are no longer sufficient for RF designs. RF design has long been considered a "black art," but it is time to put that myth to rest. Although RF design is quite different from low-frequency design, it is not very hard to understand for any electrical engineer. Once you understand the basic concepts and gain an intuition for how electromagnetic waves and fields behave, the mystery disappears.

Optics has become essential to communication networks. Fiber optics are already the backbone of telecommunications and data networks. As we exhaust the speed limits of electronics, optical interconnects and possibly optical computing will start to replace electronic designs. Optical techniques can work at high speeds and are well suited to parallel operations, providing possibilities for computation rates that are orders of magnitude faster than electronic computers. As the digital age progresses, many of us will become "light engineers," working in the world of photonics. Certainly optics is a field that will continue to grow.

Solar Panel Basics

Solar Panel Basics

Global warming is a huge problem which will significantly affect every country in the world. Many people all over the world are trying to do whatever they can to help combat the effects of global warming. One of the ways that people can fight global warming is to reduce their dependence on non-renewable energy sources like oil and petroleum based products.

Get My Free Ebook


Responses

  • Ludovica
    Why do Highspeed digital signals radiate more easily?
    27 days ago

Post a comment