Info

Any small adhesive feet

Sundry connecting wire

4 m

Various sizes

When using and testing this circuit, it is important that all wires are connected securely in place before the motor is started. This is because high voltages are generated and creating sparks when making connections does not do any of the components any particular good. If the circuit is to be turned off while the motor is still running, then switch SW1 is there for just that purpose.

The operating technique is as follows:

Before starting the motor, adjust the slider of the preset resistor VR1 to the fixed resistor end of it's track. This ensures that the charging circuit will not operate as the neon will not fire. Power up the circuit and start adjusting the preset resistor very slowly until the neon starts to flash occasionally. There should be no increased load on the motor and so no extra current drawn from the input supply.

If there is an increase in the load, you will be able to tell by the speed of the motor and the sound it makes. If there is an increase in the load, then back off VR1 and check the circuit construction. If there is no increased load, then continue turning VR1 slowly until a position is reached where the neon remains lit all the time. You should see the voltage across the battery being charged increase without any loading effects on the motor.

If you use an oscilloscope on this circuit, please remember that there is no "ground" reference voltage and that the circuit is not isolated.

Here is a picture of David's actual board construction. There are various ways for building any circuit. This particular construction method uses plain matrix board to hold the components in position and the bulk of the interconnections are made underneath the board. The charge-collecting capacitor is made here from two separate polypropolene 440 volt capacitors wired in parallel. David has opted to use a separate diode on each capacitor as this has the effect of doubling the current-carrying capacity of a single diode and is a popular technique in pulse charge circuits where sometimes several diodes are wired in parallel.

David has included a heatsink, which he marks as being "not required" but you will notice that there is insulation between the SCR and the heatsink. Mica "washers" available from the suppliers of semiconductors are particularly good for this, as mica is a good insulator and it also conducts heat very well.

Free Energy

Thyristor testing:

The components needed to construct the thyristor testing circuit shown below can be bought as Kit number 1087 from www.QuasarElectronics.com

Power Thyristor Testing Circuit

The circuit is operated by operating SW1 several times so as to get capacitors C1 and C2 fully charged. LED1 and LED2 should both be off. If either of them light, then the thyristor is faulty.

Next, with SW1 at it's position 1, press switch SW2 briefly. LED1 should light and stay on after SW2 is released. If either of these two things does not happen, then the thyristor is faulty.

With LED1 lit, press SW3 and LED1 should go out. If that does not happen, then the thyristor is faulty.

As mentioned before, even if the thyristor passes these tests it does not guarantee that it will work correctly in any circuit as it may operate intermittently and it may trigger spuriously when it shouldn't.

Component list:

Component

Quantity

Description

47 ohm resistor 0.25 watt

Was this article helpful?

0 0
Solar Stirling Engine Basics Explained

Solar Stirling Engine Basics Explained

The solar Stirling engine is progressively becoming a viable alternative to solar panels for its higher efficiency. Stirling engines might be the best way to harvest the power provided by the sun. This is an easy-to-understand explanation of how Stirling engines work, the different types, and why they are more efficient than steam engines.

Get My Free Ebook


Post a comment