"Why write a book on fuel cell technology? The best medium for keeping updated is the Internet!"

This was the comment I received from a fuel cell pioneer when he heard about this project. It is true that every day now, technical and commercial developments are reported which certainly sound and in some cases truly are interesting, and that the Internet is a good medium to use for keeping up-to-date (a list of useful Internet links is given in the Appendix). But this has been the case for the past 15 to 20 years. While my co-authors and I were working on this book, two developers went out of business — and at least in one case, this did not come as a complete surprise to those who know a little about the technology. Those who are not fuel cell pioneers may find it hard to make a judgment about what fraction of the hard selling that is usually done in a business context is relevant, and it takes considerable time to do so. Also, how does one identify the leading developers? Despite all its wonders, the Internet has two crucial weaknesses: it does not provide a historic record, and no independent institution verifies the accuracy of a piece of information that is presented on the Web.

Another peculiarity of fuel cell technology is something I learned from my students which is that it is a very broad subject encompassing areas such as electrochemistry, chemical catalysis, materials science, polymer science, fluid dynamics, electrical and mechanical engineering, etc., which are usually not covered in a single textbook. The material presented here has formed the basis for a series of fuel cell lectures and short courses at Reading (U.K.), Birkenfeld (Germany), and Clemson, South Carolina (U.S.).

The first part of this handbook (Chapters 2-7) deals with the principles of fuel cell technology and gives an outline of its long and winding history (Chapter 2), which to the best of my knowledge has not been presented elsewhere. This part of the book gives a sound technology overview to the generally interested reader, technologist, student, or engineer. The information provided is the sum of roughly 5 decades of fuel cell research and captures the main concepts, development strands, and remaining technical problems with respect to the fuel cell and the overall fuel cell system, in particular the fueling aspect. The technology has now reached a degree of maturity, which is reviewed. A whole chapter is dedicated to the direct methanol fuel cell or DMFC, reflecting the relative importance of this technology in the context of portable systems (Chapter 7).

The second part of the book deals with the applications of fuel cell technology in automotive, stationary, and portable power generation (Chapters 8-10), and it reviews competing technologies (Chapters 11 and 12). Three chapters are dedicated to the three main applications. Each chapter is self contained and gives a sound overview of the main development strands, the prototypes, and the key players. Together with some of the information provided in the earlier chapters, these chapters provide a basis that will allow interested readers to form their own opinions on the question that people in the field are constantly asked: how many years away are fuel cells? Well, here is the answer: read this book! — I sincerely hope you will enjoy it.

It is a pleasure to thank those who made this project possible. First of all, I would like to thank my co-authors. As a rule, those making active contributions to the field are very busy people, and I am grateful they were able to dedicate some of their valuable time to this project.

I would also like to thank CRC Press and the SAE. Cindy Renee Carelli, acquisitions editor, Helena Redshaw, supervisor, Editorial Project Development, and Samar Haddad, Project Editor, of CRC Press provided constant help, encouragement, and nagging, which was sometimes needed. It was certainly an exciting time for all involved. In the process, I moved from industry to academia and sometimes saw my firstborn grow faster than the page numbers. Many thanks to Martina Hinsberger for her ceaseless communications with fuel cell developers who sent us graphical material and to all those who provided photographs, advice, and valuable information on their technology. Thanks also to those who taught me science and fuel cell technology: Dieter, Dave, Jack, and Tom. And to Astrid and Sebastian for their patience, and for being there.

Gregor Hoogers

Trier July 2002

DIY Battery Repair

DIY Battery Repair

You can now recondition your old batteries at home and bring them back to 100 percent of their working condition. This guide will enable you to revive All NiCd batteries regardless of brand and battery volt. It will give you the required information on how to re-energize and revive your NiCd batteries through the RVD process, charging method and charging guidelines.

Get My Free Ebook

Post a comment