Future Outlook and Concluding Remarks

DIY 3D Solar Panels

Do It Yourself Solar Energy

Get Instant Access

A hybrid solar thermal/electrochemical process combines efficient photovoltaic devices and concentrated excess sub-bandgap heat into highly efficient elevated temperature solar electrolysis of water to generate H2 fuel. Efficiency is further enhanced by excess super-bandgap and non-solar sources of heat but diminished by losses in polarization and photo-electrolysis power matching. As also shown earlier in Chapter 4 and elaborated further here, solar concentration can provide the high temperature and diminish the requisite surface area of efficient electrical energy conversion components. High temperature electrolysis components are commercially available, suggesting that highly efficient solar generation of H2 will be ultimately attainable.

References

1. A. Kogan, Direct solar thermal splitting of water and on-site separation of the products. II. Experimental feasibility study, Int. J. Hydrogen Energy, 23 89-98 (1998).

2. A. Steinfeld, Solar thermochemical production of hydrogen-a review, Solar Energy, 78 603-615 (2005).

3. S. Licht, Solar water splitting to generate hydrogen fuel-A photothermal electrochemical analysis, Int. J. Hydrogen Energy, 30 459-470 (2005).

4. J. E. Funk, Thermochemical hydrogen production: past and present, Int. J. Hydrogen Energy, 26 185-190 (2001).

5. S. Licht, B. Wang, S. Mukeiji, T. Soga, M. Umeno, and H. Tributsh, Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for sefficient solar water splitting, Int. J. Hydrogen Energy, 26 653-659 (2001).

6. K. Agabossu, R. Chahine, J. Hamelin, F. Laurencelle, A. Anouar, J.-M. St-Arnaud, and T. K. Bose, Renewable energy systems based on hydrogen for remote applications, J. of Power Sources 96 168-172 (2001).

7. T. Ohmori, H. Go, N. Yamaguchi, A. Nakayama, H. Mametisuka, and E. Suzuki, Photovoltaic water electrolysis using the sputter-deposited a-Si/c-Si solar cells, Int. J. of Hydrogen Energy 26 661-664 (2001).

8. T. Tani, N. Sekiguchi, M. Sakai, and D. Otha, Optimization of solar hydrogen systems based on hydrogen production cost, Solar Energy 68 143-149 (2000).

9. P. Hollmuller, J.-M. Jouibert, B. Lachal, and K. Yvon, Evaluation of a 5-kWp photovoltaic hydrogen production and storage installation for a residential home in Switzerland, Int. J. of Hydrogen Energy 25 97-109 (2000).

10. S. Schulien, G. Sandstede, and H. W. Hahn, Hydrogen and carbon dioxide as raw materials for ecological energy - technology, Int. J. of Hydrogen Energy 24 299-303 (1999).

11. C. Meurer, H. Barthels, W. A. Brocke, B. Emonts, and H. G. Groehn, Phoebus - and autonomous supply system with renewable energy: six years of operational experience and advanced concepts, Solar Energy 67 131-138 (1999).

12. A. Szyszka, Ten year of solar hydrogen demonstration project at Neunburg vorm Wald, Germany, Int. J. of Hydrogen Energy 23 849-860 (1998).

13. P. A. Lehman, C. E. Chamberlin, G. Pauletto, and M. A. Rocheleau, Operating experience with photovoltaic-hydrogen energy system, Int. J. of Hydrogen Energy 22 465-470 (1997).

14. S. Galli and M. Stefanoni, Development of a solar-hydrogen cycle in Italy, Int. J. of Hydrogen Energy 22 453-458 (1997).

15. J. W. Hollenberg, E. N. Chen, K. Lakeram, and D. Modroukas, Development of a photovoltaic energy conversion system with hydrogen energy storage, Int. J. of Hydrogen Energy 20 239-243 (1995).

16. E. Bilgen, Solar hydrogen from photovoltaic-electrolyzer systems, Energy Conversion & Management 42 1047-1057 (2001).

17. M. P. Rzayeva, O. M. Salamov, and M. K. Kerimov, Modeling to get hydrogen and oxygen by solar water electroclysis, Int. J. of Hydrogen Energy, 26 195-201 (2001).

18. S. Licht, Multiple bandgap semiconductor/electrolyte solar energy conversion, J. Phys., Chem. B, 105 6281-6294 (2001).

19. Semiconductor Electrodes and Photoelectrochemistry, Edited by S. Licht, Wiley-VCH, Weinheim, 2002.

20. A. Fujishima and K. Honda, Nature 37 238 (1972).

21. A. Heller, E. Asharon-Shalom, and W. A. Bonner, B. Miller, Hydrogen-evolving semiconductor photocathodes: nature of the junction and function of the platinum group metal catalyst, J. Am. Chem. Soc. 104 6942-6948 (1982).

22. O. Khaselev and J. A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via waer splitting, Science, 280 425-427 (1998).

23. S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, and H. Tributsch, Efficient Solar Water Splitting, Conversion, J. Phys., Chem., B, 104 8920-8924 (2000).

24. H. Ohya, M. Yatabe, M. Aihara, Y. Negishi, and T. Takeuchi, Feasibility of hydrogen production above 2500 K by direct thermal decomposition reaction in membrane reactor using solar energy, Int. J. Hydrogen Energy, 27 369-376 (2002).

25. E. A.Fletcher and R. L.Moen, Hydrogen and oxygen from water, Science, 197 105 (1977).

26. J. E. Noring, R. B. Diver and E. A. Fletcher, Hydrogen and oxygen water V. The ROC system, Energy, 6 109 (1981).

27. R. B. Diver, S. Pederson, T. Kappauf, and E. A. Fletcher, Hydrogen and oxygen from water: VI. Quenching the effluent from a solar furnace, Energy 8 947 (1983).

28. G. Olalde, D. Gauthier, and A. Vialaron, Film boiling around a zirconia target. Application to water thermolysis, Adv. Ceramics, 24 879-883 (1988).

29. J. Lede, F. Lapigque, J. Villermaux, B. Cales, A. Ounalli, J. F. Baumard, and A. M. Anthony, Production of hydrogen by direct thermal decomposition of water: Preliminary investigations, Int. J. Hydrogen Energy, 7 939-950 (1982).

30. F. Lapigque, J. Lede, L. Villermaux, A. Cales, J. Baumard, A. M. Anthony, E. Abdul Aziz, D. Peuchberty, and M. Ledoux, Entropie, 110 42 (1983).

31. J. Lede, J. Villermaux, R. Ouzane, M. A. Hossain, and R. Ouahes, Production of hydrogen by simple impingement of a turbulent jet of steam upon a high temperature zirconia surface, Int. J. Hydrogen Energy, 12 3-11 (1987).

32. A. Ounalli, B. Cales, K. Dembrinski, and J. F. Baumard, C. R. Acad. Sci. Paris, 292(11) 1185 (1981).

33. E. Bilgen, Solar hydrogen production by direct water decomposition process: a preliminary engineering assessment, Int. J. Hydrogen Energy, 9 53-48 (1984).

34. E. Bilgen, M. Duccarroir, M. Foex, F. Silieude, and F. Trombe, Use of solar energy for direct and two-step water decomposition cycles, Int. J. Hydrogen Energy, 2 251-257 (1977).

35. S. Ihara, Feasibility of hydrogen production by direct water splitting at high temperature, Int. J. Hydrogen Energy, 3 287-296 (1978).

36. S. Ihara, On the study of hydrogen production from water using solar thermal energy, Int. J. Hydrogen Energy, 5 527-534 (1980).

37. A. Yogev, A. Kribus, M. Epstein and A. Kogan, Solar "Thermal Reflector" systems: A new approach for high-temperature solar plants, Int. J. Hydrogen Energy 26 239-245 (1998).

38. A. Kribus, P. Doron, R. Rubin, J. Karni, R. Reuven, S. Duchan, and E. Taragan, A multistage solar receiver: the route to high temperature, Solar Energy, 67 2-11 (2000).

39. A. Kogan, Direct solar thermal splitting of water and on-site separation of the products. IV. Development of porous ceramic membranes for a solar thermal water-splitting reactor, Int. J. Hydrogen Energy, 25 1043-1050 (2000).

40. H. Naito and H. Arashi, Hydrogen production from direct water splitting at high temperatures using a ZrO2-TiO2-Y2O3 membrane, Solid State Ionics, 79 366-370 (1995).

41. R. P. Omorjan, R. N. Paunovic, M. N. Tekic, and M. G. Antov, Maximal extent of an isothermal reversible gas-phase reaction in single- and double-membrane reaction; direct thermal splitting of water, Int. J. Hydrogen Energy, 26 203-212 (2001).

42. A. Kogan, Direct solar thermal splitting of water and on-site separation of the products. I. Theoretical evaluation of hydrogen yield, Int. J. Hydrogen Energy, 22 481-486 (1997).

43. A. Kogan, E. Spiegler, and M. Wolfshtein, Direct solar thermal splitting of water and on-site separation of the products. III. Improvement of reactor efficiency by steam entrain-ment, Int. J. Hydrogen Energy, 25 739-745 (2000).

44. S. Z. Baykara, Hydrogen production by direct solar thermal decomposition of water, possibilities for improvement of process efficiency, Int. J. Hydrogen Energy, 29 1451-1458 (2004).

45. S. Z. Baykara, Experimental solar water thermolysis, Int. J. Hydrogen Energy, 29 14591469 (2004).

46. N. Serpone, D. Lawless, and R. Terzian, Solar fuels: status and perspectives, Solar Energy, 49 221-234 (1992).

47. J. Funk, Thermochemical hydrogen production past and present, Int. J. Hydrogen Energy, 26 185-190 (2001).

48. D. OKeefe, C. Allen, G. Besenbruch, L. Brown, J. Norman, R. Sharp, and K. McCorkle, Preliminary results from bench-scale testing of sulfur-iodine thermochemical watersplitting cycle, Int. J. Hydrogen Energy, 7 381-392 (1982).

49. M. Sakurai, E. Bilgen, A. Tsutsumi, and K. Yoshida, Solar UT-3 thermochemical cycle for hydrogen production, Solar Energy, 57 51-58 (1996).

50. T. Nakamura, Hydrogen production from water utilizing solar heat at high temperatures, Solar Energy, 19 467-475 (1977).

51. A. Steinfeld, S. Sanders, and R. Palumbo, Design aspects of solar thermochemical engineering, Solar Energy, 65 43-53 (1999).

52. A. Tofighi, Ph.D. Thesis, L'Institut National Polytechnique de Toulouse, France, 1982.

53. F. Sibieude, M. Ducarroir, A. Tofighi, and J. Ambriz, High-temperature experiments with a solar furnace: the decomposition of Fe304,Mm04, CdO, Int. J. Hydrogen Energy, 7 7988 (1982).

54. R. D. Palumbo, A. Rouanet, and G. Pichelin, The solar thermal decomposition of Ti02 above 2200 K and its use in the production of Zn from ZnO, Energy - Int. J., 20 857- 868 (1995).

55. R. Palumbo, J. Lede, O. Boutin, E. Elorza Ricart, A. Steinfeld, S. Moeller, A. Weidenkaff, E.A. Fletcher, and J. Bielicki, The production of Zn from ZnO in a single step high temperature solar decomposition process, Chem. Eng. Sci., 53 2503-2518 (1998).

56. M. Sturzenegger and P. Nuesch, Efficiency analysis for a manganese-oxide-based thermo-chemical cycle, Energy, 24 959-970 (1999).

57. K. Ehrensberger, A. Frei, P. Kuhn, H.R. Oswald, and P. Hug, Comparative experimental investigations on the water-splitting reaction with iron oxide Fe1-yO and iron manganese oxides (Fe1-xMnx) 1-yO, Solid State Ionics, 78 151-160 (1995).

58. Y. Tamaura, A. Steinfeld, P. Kuhn, and K. Ehrensberger, Production of solar hydrogen by a novel, 2-step, watersplitting thermochemical cycle, Energy, 20 325-330 (1995).

59. Y. Tamaura, M. Kojima, Y. Sano, Y. Ueda, N. Hasegawa, and M. Tsuji, Thermodynamic evaluation of watersplitting by a cation-excessive (Ni, Mn) ferrite, Int. J. Hydrogen Energy, 23 1185-1191 (1998).

60. A. Weidenkaff, A. Reller, A. Wokaun, and A. Steinfeld, Thermogravimetric analysis of the ZnO/Zn water splitting cycle, Thermochim. Acta, 359 69-75 (2000).

61. A. Weidenkaff, A. Reller, F. Sibieude, A. Wokaun, and A. Steinfeld, Experimental investigations on the crystallization of zinc by direct irradiation of zinc oxide in a solar furnace, Chem. Mater, 12 2175-2181 (2000).

62. S. Moeller and R. Palumbo, Solar thermal decomposition kinetics of ZnO in the temperature range 1950-2400 K, Chem. Eng. Sci, 56 4505-4515 (2001).

63. A. Weidenkaff, A. Wuillemin, A. Steinfeld, A. Wokaun, B. Eichler, and A. Reller, The direct solar thermal dissociation of ZnO: condensation and crystallization of Zn in the presence of oxygen, Solar Energy, 65 59-69 (1999).

64. E. A. Fletcher, Solar thermal and solar quasi-electrolytic processing and separations: zinc from zinc oxide as an example, Ind. Eng. Chem. Res, 38 2275-2282 (1999).

65 E. A. Fletcher, F. Macdonald, and D. Kunnerth, High temperature solar electrothermal processing II. Zinc from zinc oxide, Energy, 10 1255-1272 (1985).

66. D. J. Parks, K.L. Scholl, and E.A. Fletcher, A study of the use of Y203 doped Zr02 membranes for solar electro-thermal and solar thermal separations, Energy, 13 121 -136 (1988).

67. R. D. Palumbo and E. A. Fletcher, High temperature solar electro-thermal processing. III. Zinc from zinc oxide at 1200-1675 K using a non-consumable anode, Energy, 13 319-332 (1988).

68. P. Haueter, S. Moeller, R. Palumbo, and A. Steinfeld, The production of zinc by thermal dissociation of zinc oxide - solar chemical reactor design, Solar Energy 67 161-167 (1999).

69. H. Aoki, H. Kaneko, N. Hasegawa, H. Ishihara, A. Suzuki, and Y. Tamaura, The ZnFe204/(Zn0+Fe304) system for H2 production using concentrated solar energy, Solid State Ionics, 172, 113-116, 2004

70. M. Inoue, N. Hasewaga, R. Uehara, N. Gokon, H. Kaneko, and Y. Tamaura, Solar hydrogen generation with H20/ZN0/MnFe204 system, Solar Energy, 76 309-315 (2004).

72. C. Perkins and A. W. Weimer, Likely near-term solar-thermal water splitting technologies, Int. J. of Hydrogen Energy, 29 1587-1599 (2004).

73. H. Kaneko, N. Gokon, N. Hasewaga, and Y. Tamaura, Solar thermochemcial process for hydrogen production using ferrites, Energy, 30 2171-2178 (2005).

74. P. Blum, Cell for electrolysis of steam at high temperture, U.S. Patent 3, 993,653, Dec. 9, 1975.

75. D. I. Tcherev, Device for solar energy Conversion by photo-electrolytic decomposition of water, U.S. Patent 3, 925,212, Nov. 23, 1976.

76. A. J. DeBethune, T. S. Licht, and N. S. Swendemna, The temperature coefficient of Electrode Potentials, J. Electrochem. Soc., 106 618-625 (1959).

77. J. O'M. Bockris, Energy Options, Halsted Press, NY, 1980.

78. D. E. Monahan, Process and apparatus for generating hydrogen and oxygen using solar energy, U.S. Patent 4,233,127, Nov. 11, 1980.

79. L. E. Crackel, Spectral converter, U.S. Patent 4,313,425, Feb. 2, 1982.

80. C. Alkan, M. Sekerci, and S. Kung, Production of hydrogen using Fresnel lens-solar electrochemical cell, Int. J. of Hydrogen Energy, 20 17-20 (1995).

81. C. W. Neefe, Passive hydrogel fuel generator, U.S. Patent 4,511,450, April 16, 1985.

82. D. E. Soule, Hybrid solar energy generating system, U.S. Patent 4,700,013, Oct. 13, 1987.

83. G. Tindell, Electrical energy production apparatus, U.S. Patent 4,841,731, June 27, 1989.

84. J. B. Lasich, Production of hydrogen from solar radiation at high efficiency, U.S. Patent 5,973,825, Oct. 26, 1999.

85. S. R. Vosen and J. O. Keller, Hybrid energy storage systems for stand-alone electric power systems: optimization of system performance and cost through control strategies, Int. J. of Hydrogen Energy, 24 1139-1156 (1999).

86. J. Padin, T. N. Veziroglu, and A. Shahin, Hybrid solar high-temperature hydrogen production system, Int. J. of Hydrogen Energy, 25 295-317 (2000).

87. H. Izumi, Hybrid solar collector for generating electricity and heat by separating solar rays into long wavelength and short wavelength, U.S. Patent 6,057,504, May 2, 2000.

88. S. Licht, Efficient solar generation of hydrogen fuel - a fundamental analysis, Electrochemical Communications, 4 790-795 (2002).

89. S. Licht, Solar water splitting to generate hydrogen fuel: Photothermal electrochemical analysis, J. Phys. Chem. B, 107 4253-4260 (2002).

90. S. Licht, L. Halperin, M. Kalina, M. Zidman, and N. Halperin, Electrochemical Potential Tuned Solar Water Splitting, Chemical Communications, 3006-3007 (2003).

91. S. Licht, pH measurement in conentrated alkaline solutions, Anal. Chem., 57 514-519 (1987).

92. T. S. Light, T. S, Licht, A. C. Bevilacqua, and Kenneth R. Morash, Conductivity and resistivity of ultrapure water, Electrochem. Solid State Lett., 8 E16-E19 (2005)

93. S. Licht, Analysis in highly concentrated solutions: Potentiometric, conductance, evanescent, densometric, and spectroscopic methodolgies, in Electroanalytical Chemistry, Vol. 20, Edited by A. Bard and I. Rubinstein, Marcel Dekker, NY, 1998, pp. 87-140.

94. M. W. Chase, J. Phys. Chem. Ref. Data 14, Monograph 9 (JANF Thermochemical Tables, 4th edition), 1998.

95. M. W. Chase, J. Phys. Chem. Ref. Data Supplement No. 1 to 14, (JANF Thermochemical Tables, 3rd edition), 1986.

96. W. Kreuter and H. Hofmann, Electrolysis: The important energy transformer in a world of sustainable energy, Int. J. Hydrogen Energy, 23 661-669 (1998).

97. M. A. Green, K. Emery, D. L. King, S. Igari, and W. Warta, Solar Efficiency Tables (Version 17), Progr. Photovolt, 9 49-56 (2001).

98. E. Fletcher, J. Solar Energy Eng, 123 143 (2001).

99. A. Yogev, Quantum Processes for Solar Energy Conversion, Weizmann Sun Symp. Proc., Rehovot, Israel, 1996.

100. R. Kribus, J. Doron, P. Rubin, J. Karni, R. Reuven, S. Duchan, and T. Tragan, A multistage solar receiver, Solar Energy, 67 3-11 (1999).

101. E. Segal and M. Epstein, The optics of the solar tower reflector, Solar Energy, 69 229241 (2001).

102. B. Misch, A. Firus, and G. Brunner, An alternative method of oxidizing aqueous waste in supercritical water: oxygen supply by means of electrolysis, J. Supercritical Fluids, 17 227-237 (2000).

103. O. Yamamoto, Solid oxide fuel cells: fundamental aspects and prospects, Electrochimica Acta, 45 2423-35 (2000).

104. D. Kusunoki, Y. Kikuoka, V. Yanagi, K. Kugimiya, M. Yoshino, M. Tokura, K. Wata-nabe H. Miyamoto, S. Ueda, M. Sumi, and S. Tokunaga, Development of Mitsubishi -planar reversible cell - Fundamental test on hydrogen-utilized electric power storage system, Int. J. Hydrogen Energy, 20 831-834 (1995).

105. K. Eguchi , T. Hatagishi, and H. Arai, Power generation and steam electrolysis characteristics of an electrochemical cell with a zirconia- or ceria-based electrolyte, Solid State Ionics, 86-8 1245-1249 (1996).

This page intentionally blank

Was this article helpful?

0 0
Solar Power Sensation V2

Solar Power Sensation V2

This is a product all about solar power. Within this product you will get 24 videos, 5 guides, reviews and much more. This product is great for affiliate marketers who is trying to market products all about alternative energy.

Get My Free Ebook


Post a comment