Contents

Energy2green Wind And Solar Power System

Wind Energy DIY Guide

Get Instant Access

Voorwoord i

Note to the reader iii

1 Introduction 1

1.1 Motivation and background 1

1.1.1 History: from windmill to wind turbine 1

1.1.2 The future of wind power 9

1.1.3 Cost-effective wind turbine design and operation 11

1.2 Problem formulation 13

1.3 Outline 15

1.4 Typographical conventions 16

Part I: Modeling of flexible wind turbines 17

2 State-of-the-art of wind turbine design codes 19

2.1 Introduction 19

2.2 Overview wind turbine design codes 20

2.3 Main features overview 23

2.3.1 Rotor aerodynamics 23

2.3.2 Structural dynamics 30

2.3.3 Generator description 32

2.3.4 Wind field description 33

2.3.5 Wave field description 35

2.3.6 Control design 38

2.3.7 Summary main features in tabular form 39

2.4 Conclusions 42

3 Dynamic wind turbine model development 45

3.1 Introduction: general wind turbine model 45

3.2 Wind module 48

3.3 Aerodynamic module 49

3.3.1 Introduction 49

3.3.2 Rankine-Froude actuator-disk model 49

3.3.3 Blade element momentum model 58

3.3.4 Calculation of the blade element forces 67

3.4 Mechanical module 69

3.4.1 Introduction 69

3.4.2 Superelement approach 72

3.4.3 Generation of the equations of motion of MBS 76

3.4.4 Automated structural modeling procedure 79

3.4.5 Soil dynamics 80

3.4.6 Example: three bladed wind turbine 82

3.5 Electrical module 83

3.5.1 Introduction 83

3.5.2 Synchronous generator: physical description 84

3.5.3 Synchronous generator: mathematical description 87

3.5.4 Dynamic generator model 87

3.6 Summary 103

Part II: Model validation issues 107

4 Module verification and validation 109

4.1 Introduction 109

4.1.1 Verification versus validation 110

4.1.2 Model verification and validation approach 111

4.2 Mechanical module verification and validation 112

4.2.1 Case 1: Euler-Bernoulli beam (verification) 112

4.2.2 Case 2: APX-45 rotor blade (validation) 120

4.2.3 Case 3: APX-70 rotor blade (validation) 124

4.2.4 Case 4: RB-51 rotor blade (validation) 126

4.2.5 Case 5: RB-70 rotor blade (validation) 126

4.2.6 Discussion 128

4.2.7 Case 6: Lagerwey LW-50/750 wind turbine 131

4.3 Electrical module verification and validation 142

4.3.1 Literature review 142

4.3.2 Synchronous generator parameter identification 142

4.3.3 MSR test applied to the LW-50/750 generator 147

4.4 Conclusions 156

5 Model parameter updating using time-domain data 159

5.1 Introduction 159

5.2 Identifiability of model parameters 161

5.2.1 Persistence of excitation 162

5.2.2 Model parametrization 163

5.3 Off-line parameter optimization procedure 165

5.3.1 Unconstrained optimization 165

5.3.2 Constrained optimization 169

5.3.3 Selecting a method 169

5.4 Verification using simulated data 171

5.4.1 Beam1sd 171

5.4.2 SDLW1 177

5.5 Discussion 180

Part III: Model based control design 183

6 Frequency converter controller design 185

6.1 Introduction 185

6.2 Frequency converter controller objectives 186

6.3 Frequency converter controller configuration 187

6.3.1 Rectifier controller 188

6.3.2 Inverter controller 191

6.4 Rectifier frequency converter controller design 191

6.4.1 Open-loop analysis 191

6.4.2 Set-point computation and controller design 192

6.4.3 Closed-loop analysis 194

6.5 Conclusions 194

7 Economic control design 197

7.1 Introduction 197

7.2 Closed-loop wind turbine control 198

7.2.1 History of windmill and wind turbine control 198

7.2.2 State-of-the-art variable speed wind turbine control 200

7.3 The cost of generating electricity using wind 203

7.3.1 Performance increase 204

7.3.2 Cost reduction 205

7.4 Closed-loop control design methodology: design guidelines 206

Part IV: Conclusions and recommendations 207

8 Conclusions 209

9 Recommendations for future research 213 Part V: Appendices 217

A Main features Lagerwey LW-50/750 wind turbine 219

A.1 The Lagerwey LW-50/750 wind turbine 219

A.2 Rotor 220

A.3 Support structure 224

A.4 Generator 225

B Flow states of a wind turbine rotor 227

C Comparison of the finite element, lumped-mass and superelement method 231

C.1 Exact eigenfrequencies 231

C.2 Finite Element approximation 232

C.3 Lumped-mass approximation 233

C.4 Superelement approximation 234

C.5 Comparison 234

D Proofs of Section 3.5 237

D.1 Direct-axis 237

D.2 Quadrature-axis 242

E Main wind turbine modes of operation 245

F Modal analysis measurement equipment 247

F.1 Cable 247

F.2 Data acquisition system 248

F.3 Force transducer 249

F.4 Accelerometers 250

F.4.1 Accelerometer mounting 250

F.4.2 Accelerometer positions 251

G Frequency response functions 253

G.1 Single degree of freedom 253

G.2 Two degrees of freedom 257

H Modified step-response test measurement equipment 263

H.1 Generator 263

H.2 Transfoshunt 264

H.3 Low power DC voltage source 264

H.4 Thyristor 264

H.5 Data-acquisition system 264

H.5.1 Input-output boards 265

H.5.2 Digital Signal Processor (DSP) board 265

H.5.3 Personal computer 266

I DAWIDUM: a new wind turbine design code 267

I.1 Introduction 267

I.2 Modeling 269

I.2.1 Wind module library 269

1.2.2 Aerodynamic module library 271

1.2.3 Mechanical module library 272

1.2.4 Electrical module library 278

Bibliography 279

Definitions 305

Glossary of symbols 313

Index 325

Samenvatting SSS

Abstract SS5

Curriculum vitae SS7

Was this article helpful?

0 0
Renewable Energy 101

Renewable Energy 101

Renewable energy is energy that is generated from sunlight, rain, tides, geothermal heat and wind. These sources are naturally and constantly replenished, which is why they are deemed as renewable. The usage of renewable energy sources is very important when considering the sustainability of the existing energy usage of the world. While there is currently an abundance of non-renewable energy sources, such as nuclear fuels, these energy sources are depleting. In addition to being a non-renewable supply, the non-renewable energy sources release emissions into the air, which has an adverse effect on the environment.

Get My Free Ebook


Post a comment